BINDT WORKSHOP

'NDT REQUIREMENTS FOR AUTOMOTIVE COMPOSITES'

30 YEARS OF COMPOSITES IN F1 APPLICATIONS OF NDT

Brian O'Rourke

Chief Composites Engineer, Williams Grand Prix Engineering Ltd. 23rd. March, 2017.

FW39/40 OF 2017

F1 CAR PERFORMANCE

A few general facts:-

- 690kg minimum weight (incl. driver) •
- 350kph top speed (at Monza)
- 3.5g cornering, 5.5g braking, 1.5g accelerating
- 25 kN down-force at 300 km/hr, typ. •

Power unit (2017):- 145 kg. min.

- 950 bhp (?) engine, 1.6 I. V6 turbo-charged limited to 15,000rpm, hybrid. Fuel 100kg., rate 100 kg/hr max.
- ERS capacity 4MJ/lap power output
- MGU-K: 50,000 rpm, 200 Nm, 2MJ/lap max, 120 kW
- MGU-H: 125,000 rpm max, unlimited power in/out

ADVANCED MATERIALS IN F1 USE

Materials are chosen to be correct for the application

The range of types used covers:

- High-spec steels
- Titanium
- Aluminium alloys
- Magnesium
- Polymeric matrix composites
- Metal matrix composites
- Carbon/carbon composites

EARLY F1 PRIMARY STRUCTURES IN COMPOSITE MATERIALS

The McLaren MP4-1 (1981)

Hill GH1 (ex-Lola T371 1975)

FIRST WILLIAMS COMPOSITE MONOCOQUE – FW10 (1985)

CHASSIS CONSTRUCTION – COMPOSITE MATERIALS

FW07: 1979-82

FW11: 1986

CHASSIS CONSTRUCTION – COMPOSITE MATERIALS

FW07: 1979-82

FW11: 1986

FW39 OF 2017

COMPOSITE MATERIALS – EXTENT OF USE

COMPOSITE MATERIALS – EXTENT OF USE

COMPOSITE MATERIALS APPLICATIONS

Brake ducting

Suspension assemblies

COMPOSITE MATERIALS APPLICATIONS

Front wing assembly

'Bodywork'

'MONOCOQUE' CHASSIS ASSEMBLY

CHASSIS FUNCTIONS - INERTIAL AND AERO LOADING

FIA STATIC PROOF TESTS

FIA FRONT AND REAR IMPACT TESTS

CHASSIS CONSTRUCTION

Irregular inner surface

SANDWICH CONSTRUCTION

Where used

Inboard joint

Rear assembly – hot!

Suspension elements: adhesively bonded joints connect the wheels to the car!

NDT TECHNIQUES

Early: 'Audiosonic'

Current: Ultrasonic Phased-Array + Real-time Radiography

ANOMALY DETECTED BY NDT - EXAMPLE

DRIVER ROLL-OVER PROTECTION

ROLL-OVER HOOP – CT OUTPUT

ROLL-OVER HOOP – CT OUTPUT

ADVANCED MATERIALS IN F1 USE

THANKS FOR YOUR ATTENTION

